Giving metal to microbes could reduce greenhouse gas

New research finds when microbes don’t get the metals they need, the result may be more consequential than previously understood

Brandie Jefferson 
Stream sediment at Oak Ridge (Photo: Elaine Flynn)
Stream sediment at Oak Ridge (Photo: Elaine Flynn)

Like you and me, microbes need some metals in their diet to stay healthy. The metals help the microbes fully “digest” food. After a good meal, the microbes that gain energy by chemically reducing nitrate release a harmless byproduct: nitrogen, the gas that makes up 78% of Earth’s atmosphere.

But if one metal in particular, copper, isn’t available, these microbes can’t complete the biochemical “digestive” process, called denitrification. Instead of releasing nitrogen, they’ll release the potent greenhouse gas nitrous oxide.

Previous lab studies using pure cultures have shown that copper availability was important for denitrification. Now research from the lab of Daniel Giammar, the Walter E. Browne Professor of Environmental Engineering at the McKelvey School of Engineering, and Jeffrey Catalano, professor of earth and planetary sciences in Arts & Sciences, both at Washington University in St. Louis, has shown that in the complex, dynamic aquatic environments these microbes call home, there might not always be enough copper available for denitrification.

Their research was published June 15 in the journal Geochimica et Cosmochimica Acta.

“Material in a beaker is not the same as material in the environment,” Giammar said. “A big part of our approach was to take real materials from real environmental systems and bring them to the lab and look at them in controlled ways.”

The findings underscore the outsized role of copper when it comes to the release of nitrous oxide. “At regular, background levels, these systems may not have enough metals to carry out the process,” said Neha Sharma, a PhD student in Giammar’s lab.

That’s important because nitrous oxide is the third most potent greenhouse gas and 50% of it comes from microbes in aquatic ecosystems.

To better understand how copper affected the gas’s release in these systems, Sharma and Elaine Flynn, a senior scientist in Catalano’s lab, went to the source. Working with three U.S. Department of Energy (DOE) labs — Oak Ridge and Argonne national laboratories and the Savannah River Site — Sharma and Flynn collected microbes from wetlands and riverbeds. When they analyzed how much copper was in the systems, they realized it wasn’t enough to complete denitrification.

Argonne-Site_RECORD_Taken-by-Jeffrey-Catalano.jpeg
Marsh wetland at Argonne National Laboratory (Photo: Jeffrey Catalano)

“Then we wanted to see, if we manually added copper, would it affect the release of nitrous oxide,” Sharma said. It did. “All of the nitrous oxide was converted into other things,” but no harmful greenhouse gases.

This finding could point to new ways to curb a warming atmosphere, Sharma said. “If we put a bit of metals into the natural systems, it might mitigate the release of N2O,” she said. It also could have a more immediate effect for researchers who study climate.

“Currently, models that are predicting the release of gases from various systems do not account for these factors,” Sharma said. “They know factors like food availability or temperature might affect greenhouse gas release, but they don’t include the effect of metals on this aspect of greenhouse gases.”

Read the full story here.


The McKelvey School of Engineering at Washington University in St. Louis promotes independent inquiry and education with an emphasis on scientific excellence, innovation and collaboration without boundaries. McKelvey Engineering has top-ranked research and graduate programs across departments, particularly in biomedical engineering, environmental engineering and computing, and has one of the most selective undergraduate programs in the country. With 165 full-time faculty, 1,420 undergraduate students, 1,614 graduate students and 21,000 living alumni, we are working to solve some of society’s greatest challenges; to prepare students to become leaders and innovate throughout their careers; and to be a catalyst of economic development for the St. Louis region and beyond.

Click on the topics below for more stories in those areas

Back to News