New Device Inspired by Python Teeth Doubles Strength of Rotator Cuff Repairs
Columbia University team uses biomimicry to create a device that may reduce the risk of rotator cuff re-tearing in patients
Most people, when they think about pythons, visualize the huge snake constricting and swallowing victims whole. But did you know that pythons initially hold onto their prey with their sharp, backward-curving teeth? Medical researchers have long been aware that these teeth are perfect for grasping soft tissue rather than cutting through it, but no one has yet been able to put this concept into surgical practice. Over the years, mimicking these teeth for use in surgery has been a frequent topic of discussion in the lab of Dr. Stavros Thomopoulos, a professor of orthopedics and biomedical engineering at Columbia University.
Biomimicry key to new study
A leading researcher focused on the development and regeneration of the tendon-to-bone attachment, Thomopoulos is particularly interested in advancing tendon-to-bone repair, necessary for rotator cuff repair and anterior cruciate ligament reconstruction. In a paper published today by Science Advances, his team reports that they have developed a python-tooth-inspired device as a supplement to current rotator cuff suture repair, and found that it nearly doubled repair strength.
“As we grow older, more than half of us will experience a rotator cuff tear leading to shoulder pain and decreased mobility,” said Thomopoulos, who has joint appointments at Columbia Engineering and Columbia’s Vagelos College of Physicians and Surgeons as the Robert E. Carroll and Jane Chace Carroll Professor of Biomechanics (in Orthopedic Surgery and Biomedical Engineering). “The best medical intervention is rotator cuff surgery, but a remarkably high percentage of these repairs will fail within just a couple of months. Our biomimetic approach following the design of python teeth helps to reattach tendons to bone more securely. The device not only augments the strength of the repair but can also be customized to the patient. We’re really excited about the potential of our device to improve the care of rotator cuff injuries.”
Read the full story here.